
System Design and Methodology / 

Embedded Systems Design

II. Models of Computation and Modeling Languages

1 of 63

TDTS07/TDDI08

VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen för datavetenskap (IDA)

Linköpings universitet



Models of Computation and Modeling Languages

1. System Specification

2. System Modeling and Formal Models

3. Models of Computation: What’s that?

4. Concurrency

5. Communication & Synchronisation

6. Common Models of Computation

2 of 38



3 of 38

From Specifications to Implementations

◼ Specification: A description of basic requirements and properties of a system

 The designer gets a specification as an input and, finally, has to 

produce an implementation.

This is usually done as a sequence of refinement steps.

 Specifications can be:

- informal (natural language)

- more detailed and unambiguous (based on a formal notation)



4 of 38

System Specifications

◼ A specification captures:

 The basic required behaviour of the system

- E.g. as a relation between inputs and outputs

 Other (non-functional) requirements

- time constraints

- power/energy constraints

- safety requirements

- environmental aspects

- cost, weight, etc.



5 of 38

System Model

◼ As an early step in the design flow, a system model is produced (you 

remember the design flow!).

◼ The model is a description of certain aspects/properties of the system. Models 

are abstract, in the sense that they omit details and concentrate on aspects that 

are significant for the design process.



System Model

◼ As an early step in the design flow, a system model is produced (you 

remember the design flow!).

◼ The model is a description of certain aspects/properties of the system. Models 

are abstract, in the sense that they omit details and concentrate on aspects that 

are significant for the design process.

T1

T3

6 of 38

T5 T6

T4

T7

T8

T2

You remember our 

task graph example!



7 of 38

System Model

◼ Models are formulated using modeling languages

◼ Modeling language:

 well-suited to expressing the basic system properties and basic aspects of 

system behaviour in a succinct and clear manner

 lends itself well to the, preferably automatic, checking of requirements and 

synthesis of implementations.

◼ Depending on the particularities of the system, an adequate modeling 

language has to be chosen.

The language has to contain the appropriate language constructs in order to 

express the system’s functionality and requirements.



8 of 38

System Model

◼ Modeling Languages can be

 graphical

 textual

◼ Modeling languages can be

 “ordinary” programming languages (C, C++)

 hardware description languages (VHDL, Verilog)

 languages specialised for modeling of systems in particular areas, and with 

particular features;

they are often based on particular models of computation.



9 of 38

System Model

What do we want to do with the model of an embedded system?



10 of 38

System Model

What do we want to do with the model of an embedded system?

1. To validate the system description in order to check that the specified 

functionality is the desired one and the requirements are stated correctly:

- by formal verification

- by simulation

2. To synthesise efficient implementations



11 of 38

Semantics of System Models

We would like modeling languages to have well defined semantics  models are 

unambiguous.

 The semantics is the set of rules which associate a meaning to

syntactical constructs (combination of symbols) of the language.

 The semantics of the language is based on the underlying model of 

computation.

It depends on this underlying model of computation what kind of sys- tems 

can be described with the language.

The model of computation decides on the expressiveness of the 

language.



12 of 38

Semantics of System Models

Do we want large expressiveness (we can describe anything we want)? Not 

exactly!

◼ Large expressive power: imperative model (e.g. unrestricted use of C or Java):

 Can specify “anything”.

 No formal reasoning possible (or extremely complex).

◼ Limited expressive power, based on well chosen computation model:

 Only particular systems can be specified.

 Formal reasoning is possible.

 Efficient (possibly automatic) synthesis.



13 of 38

process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

Language L1



process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

Synchronous:

send and receive blocking; P1 

and P2 are waiting for each 

other to handshake and hand 

over the message:

- No buffering needed.

- P1 and P2 run at the same 

rate in lockstep.

Language L1

14 of 38



process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Synchronous:

send and receive blocking; P1 

and P2 are waiting for each 

other to handshake and hand 

over the message:

- No buffering needed.

- P1 and P2 run at the same 

rate in lockstep.

Language L1 Language L2

15 of 38



process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Synchronous:

send and receive blocking; P1 

and P2 are waiting for each 

other to handshake and hand 

over the message:

- No buffering needed.

- P1 and P2 run at the same 

rate in lockstep.

Language L1 Language L2

16 of 38



process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Synchronous:

send and receive blocking; P1 

and P2 are waiting for each 

other to handshake and hand 

over the message:

- No buffering needed.

- P1 and P2 run at the same 

rate in lockstep.

process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

Language L1 Language L2

17 of 38

Language L3



process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Synchronous:

send and receive blocking; P1 

and P2 are waiting for each 

other to handshake and hand 

over the message:

- No buffering needed.

- P1 and P2 run at the same 

rate in lockstep.

process P1

{ .................

send m to P2;

................. }

process P2

Asynchronous:

receive blocking but send not; 

P1 and P2 are not waiting for 

each other; P2 only waits if there 

is no message available:

- Buffering is needed!

- P1 and P2 can run at different

rates.

Language L1 Language L2

{ .................

receive m from P1;

................. }
18 of 38

Language L3



process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Synchronous:

send and receive blocking; P1 

and P2 are waiting for each 

other to handshake and hand 

over the message:

- No buffering needed.

- P1 and P2 run at the same 

rate in lockstep.

process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Asynchronous:

receive blocking but send not; 

P1 and P2 are not waiting for 

each other; P2 only waits if there 

is no message available:

- Buffering is needed!

- P1 and P2 can run at different 

rates.

Language L1 Language L2

18 of 38

Language L3 Language L4



process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Synchronous:

send and receive blocking; P1 

and P2 are waiting for each 

other to handshake and hand 

over the message:

- No buffering needed.

- P1 and P2 run at the same 

rate in lockstep.

process P1

{ .................

send m to P2;

................. }

process P2

{ .................

receive m from P1;

................. }

module P1

{ ................. 

m!P2;

................. }

module P2

{ ................. 

m?P1;

................. }

Asynchronous:

receive blocking but send not; 

P1 and P2 are not waiting for 

each other; P2 only waits if there 

is no message available:

- Buffering is needed!

- P1 and P2 can run at different 

rates.

Language L1 Language L2

20 of 38

Language L3 Language L4



Models of Computation

The model of computation deals with the set of theoretical choices that build the 

execution model of the language.

◼ A design is represented as a set of components, which 

can be considered as isolated monolithic modules (often 

called processes or tasks), interacting with each other 

and with the environment.

The model of computation defines the behavior and 

interaction mechanisms of these modules.

21 of 38



Models of Computation

The model of computation deals with the set of theoretical choices that build the 

execution model of the language.

◼ Models of computation usually refer to:

 how each module (process or task) performs 

internal computation

 how they transfer information between them

 how they relate in terms of concurrency

22 of 38



Models of Computation

The model of computation deals with the set of theoretical choices that build the 

execution model of the language.

◼ Models of computation usually refer to:

 how each module (process or task) performs 

internal computation

 how they transfer information between them

 how they relate in terms of concurrency

◼ Some models of computation do not refer to aspects 

related to the internal computation of the modules, but 

only to module interaction and concurrency.

◼ The main aspects we are interested in:

23 of 38







 Concurrency 

Communication&Synchronization 

Time

Hierarchy



24 of 38

Concurrency

◼ A system consists of several activities (processes or tasks) which potentially can be 

executed in parallel. Such activities are called concurrent.

How to express concurrency?

 This is one aspect in which models of computation differ!

- Data-driven concurrency

- Control-driven concurrency



Data-driven Concurrency

The system is modelled as a set of processes without any explicit specification of the 

ordering of executions.

The execution order of processes (and, implicitly, the potential of parallelism) is fixed 

solely by data dependencies

◼ Appropriate e.g. for many DSP applications

25 of 38



Data-driven Concurrency

p3

26 of 38

I

p1

p4

O

C1 C2

p2

C3 C4



Data-driven Concurrency

Process p1( in int a, out int x, out int y) {
...............

}

Process p2( in int a, out int x) {
...............

}

Process p3( in int a, out int x) {
...............

}

Process p4( in int a, in int b, out int x) {
...............

}

channel int I, O, C1, C2, C3, C4;

p1(I, C1, C2);

p2(C1, C3);

p3(C2, C4);

p4(C3, C4, O);

p3

I

p1

p4

O

C1 C2

p2

C3 C4

It doesn’t matter in 

which order I have 

written this.

27 of 38



28 of 38

Control-driven Concurrency

◼ The execution order of processes is 

given explicitly in the system model.

◼ Explicit constructs are used to specify 

sequential execution and concurrency.



Control-driven Concurrency

module p1:
..........

end module

module p2:
..........

end module

module p3:
..........

end module

module p4:
..........

end module

run p1;

[ run p2 || run p3]; 

run p4

◼ The execution order of processes is 

given explicitly in the system model.

◼ Explicit constructs are used to specify 

sequential execution and concurrency.

Here, the order in 

which we write is 

essential!

29 of 38



30 of 38

Communication

◼ Processes have to communicate in order to exchange information.

Various communication mechanisms are used in different computation models:

 shared memory

 message passing

- blocking

- non-blocking



Shared Memory Communication

◼ Each sending process writes to shared variables which can be read by a 

receiving process.

process p1{

int a;
........

X = a+1;
........

}

process p2{

int b;
........ 

b = X;
........

}

int X;

shared memory

31 of 38

Private variables:

- a: local to p1

- b: local to p2

Shared variable:

- X



Message-passing Communication

◼ Data (messages) are passed over an abstract communication medium called

channel.

◼ This communication model is adequate for modeling of distributed systems.

process p1{

int a;
........

C.send( a+1);
........

}

process p2{

int b;
........

b = C.receive();
........

}

Abstract channel C

32 of 38



Message-passing Communication

◼ Blocking communication

A process which communicates over the channel blocks itself (suspends) until 

the other process is ready for the data transfer.

The two processes have to synchronize before data transfer can be initiated.

33 of 38



Message-passing Communication

◼ Non-blocking communication

Processes do not have to synchronize for communication!

Additional storage (buffer) has to be associated with the channel if no 

messages are to be lost!

 The sending process places the message into the buffer and continues 

execution.

The receiving process reads the message from the channel whenever it is 

ready to do it.

34 of 38



35 of 38

Synchronization

◼ Synchronization cannot be separated from communication.

Any interaction between processes implies a certain degree of 

communication and synchronization.

◼ Synchronization:One process is suspended until another one reaches a 

certain point in its execution.

 Control-dependent synchronization

 Data-dependent synchronization



36 of 38

Control-dependent Synchronization: Example

module p1:
..........

end module

module p2:
..........

end module

module p3:
..........

end module

module p4:
..........

end module

run p1;

[ run p2 || run p3]; 

run p4

◼ With control-dependent synchronization the con- trol 

structure is responsible for synchronization

◼ In the example we have several synchronization 

points specified:

 between completion of p1 and starting of p2 

and p3;

 between completion of p2 and p3, and 

starting of p4.



Data-dependent Synchronization: Example

........

X = ....;
........

}

process p1{ process p2{
........

wait until X=...;
........

}

int X;

process p3{
........

wait until X is modified;
........

}

37 of 38



38 of 38

And don’t forget: Time!

◼ How is time handled?

This makes a great difference between models of computation!



39 of 38

Common Models of Computation

In this course, we will analyze some of the models of computation commonly used 

to describe embedded systems:

 Dataflow Models

 Petri Nets

 Discrete Event

 (Synchronous) Finite State Machines

 Globally Asynchronous Locally Synchronous Models

 Timed & Hybrid Automata


	Slide 1: System Design and Methodology / Embedded Systems Design  II. Models of Computation and Modeling Languages
	Slide 2: Models of Computation and Modeling Languages
	Slide 3: From Specifications to Implementations
	Slide 4: System Specifications
	Slide 5: System Model
	Slide 6: System Model
	Slide 7: System Model
	Slide 8: System Model
	Slide 9: System Model
	Slide 10: System Model
	Slide 11: Semantics of System Models
	Slide 12: Semantics of System Models
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Models of Computation
	Slide 22: Models of Computation
	Slide 23: Models of Computation
	Slide 24: Concurrency
	Slide 25: Data-driven Concurrency
	Slide 26: Data-driven Concurrency
	Slide 27: Data-driven Concurrency
	Slide 28: Control-driven Concurrency
	Slide 29: Control-driven Concurrency
	Slide 30: Communication
	Slide 31: Shared Memory Communication
	Slide 32: Message-passing Communication
	Slide 33: Message-passing Communication
	Slide 34: Message-passing Communication
	Slide 35: Synchronization
	Slide 36: Control-dependent Synchronization: Example
	Slide 37: Data-dependent Synchronization: Example
	Slide 38: And don’t forget: Time!
	Slide 39: Common Models of Computation

