System Design and Methodology /
Embedded Systems Design

ll. Models of Computation and Modeling Languages

TDTS07/TDDIO8
VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen for datavetenskap (IDA)
Linkopings universitet

1 of 63

Models of Computation and Modeling Languages

1. System Specification

2. System Modeling and Formal Models
3. Models of Computation: What's that?
4. Concurrency

5. Communication & Synchronisation

6. Common Models of Computation

2 of 38

From Specifications to Implementations

m Specification: A description of basic requirements and properties of a system

d The designer gets a specification as an input and, finally, has to
produce an implementation.

This is usually done as a sequence of refinement steps.

0 Specifications can be:

- informal (natural language)
- more detailed and unambiguous (based on a formal notation)

3of 38

System Specifications

m A specification captures:
a9 The basic required behaviour of the system

- E.g. as a relation between inputs and outputs

a9 Other (non-functional) requirements
- time constraints
- power/energy constraints
- safety requirements
- environmental aspects

- cost, weight, eftc.

4 of 38

System Model

m As an early step in the design flow, a system model is produced (you
remember the design flow!).

m The modelis a description of certain aspects/properties of the system. Models
are abstract, in the sense that they omit details and concentrate on aspects that
are significant for the design process.

5of 38

System Model

m As an early step in the design flow, a system model is produced (you
remember the design flow!).

m The modelis a description of certain aspects/properties of the system. Models
are abstract, in the sense that they omit details and concentrate on aspects that
are significant for the design process.

»/@\
2) 3

You remember our
task graph example!

6 of 38

System Model

Models are formulated using modeling languages

Modeling language:

1 well-suited to expressing the basic system properties and basic aspects of
system behaviour in a succinct and clear manner

0 lends itself well to the, preferably automatic, checking of requirements and
synthesis of implementations.

Depending on the particularities of the system, an adequate modeling
language has to be chosen.

The language has to contain the appropriate language constructs in order to
express the system’s functionality and requirements.

7 of 38

System Model

n Modeling Languages can be
a graphical
0 textual

n Modeling languages can be

d “ordinary” programming languages (C, C++)
3 hardware description languages (VHDL, Verilog)

0 languages specialised for modeling of systems in particular areas, and with
particular features;
they are often based on particular models of computation.

8 of 38

System Model

What do we want to do with the model of an embedded system?

9 of 38

System Model

What do we want to do with the model of an embedded system?

1. To validate the system description in order to check that the specified
functionality is the desired one and the requirements are stated correctly:

- by formal verification
- by simulation

2. To synthesise efficient implementations

10 of 38

Semantics of System Models

We would like modeling languages to have well defined semantics = models are
unambiguous.

a9 The semantics is the set of rules which associate a meaning to
Syntactical constructs (combination of symbols) of the language.

0 The semantics of the language is based on the underlying model of
computation.

It depends on this underlying model of computation what kind of sys- tems
can be described with the language.

The model of computation decides on the expressiveness of the
language.

11 of 38

Semantics of System Models

Do we want large expressiveness (we can describe anything we want)? Not
exactly!

m Large expressive power: imperative model (e.g. unrestricted use of C or Java):
0 Can specify “anything”.
a No formal reasoning possible (or extremely complex).

m Limited expressive power, based on well chosen computation model:

a Only particular systems can be specified.
0 Formal reasoning is possible.
0o Efficient (possibly automatic) synthesis.

12 of 38

| Language L1 |

process P1

13 of 38

| Language L1 |

process P1

{
send m to P2;
................. }

process P2

{

Synchronous:

send and receive blocking; P1

and P2 are waiting for each

other to handshake and hand

over the message:

- No buffering needed.

- P1 and P2 run at the same
rate in lockstep.

14 of 38

| Language L1 |

process P1

Synchronous:

send and receive blocking; P1

and P2 are waiting for each

other to handshake and hand

over the message:

- No buffering needed.

- P1 and P2 run at the same
rate in lockstep.

| Language L2 |

module P1

{ e,
m!P2;
................. }

module P2

{ e,
m?P1;
................. }

15 of 38

| Language L1 |

process P1

Synchronous:

send and receive blocking; P1

and P2 are waiting for each

other to handshake and hand

over the message:

- No buffering needed.

- P1 and P2 run at the same
rate in lockstep.

| Language L2 |

module P1

{ e,
m!P2;
................. }

module P2

{ e,
m?P1;
................. }

16 of 38

| Language L1 |

process P1

| Language L3 |

process P1

{ e,
send m to P2;
................. }

process P2

{ e,

Synchronous:

send and receive blocking; P1

and P2 are waiting for each

other to handshake and hand

over the message:

- No buffering needed.

- P1 and P2 run at the same
rate in lockstep.

| Language L2 |

module P1

{ e,
m!P2;
................. }

module P2

{ e,
m?P1;
................. }

17 of 38

| Language L1 |

process P1

| Language L3 |

process P1

{ e,
send m to P2;
................. }

process P2

{ e,

Synchronous:

send and receive blocking; P1

and P2 are waiting for each

other to handshake and hand

over the message:

- No buffering needed.

- P1 and P2 run at the same
rate in lockstep.

Asynchronous:

receive blocking but send not;

P1 and P2 are not waiting for

each other; P2 only waits if there

IS N0 message available:

- Buffering is needed!

- P1 and P2 can run at different
rates.

| Language L2 |

module P1

{ e,
m!P2;
................. }

- module P2

{ e,
m?P1;
................. }

18 of 38

| Language L1 |

process P1

| Language L3 |

process P1

Synchronous:

send and receive blocking; P1

and P2 are waiting for each

other to handshake and hand

over the message:

- No buffering needed.

- P1 and P2 run at the same
rate in lockstep.

Asynchronous:

receive blocking but send not;

P1 and P2 are not waiting for

each other; P2 only waits if there

IS N0 message available:

- Buffering is needed!

- P1 and P2 can run at different
rates.

| Language L2 |

module P1

{ e,
m!P2;
................. }

module P2

{ e,
m?P1;
................. }

| Language L4 |

module P1

{ e
mlP2;
................. }

module P2

{ e
m?P1;
................. }

18 of 38

| Language L1 |

process P1

| Language L3 |

process P1

Synchronous:

send and receive blocking; P1

and P2 are waiting for each

other to handshake and hand

over the message:

- No buffering needed.

- P1 and P2 run at the same
rate in lockstep.

Asynchronous:

receive blocking but send not;

P1 and P2 are not waiting for

each other; P2 only waits if there

IS N0 message available:

- Buffering is needed!

- P1 and P2 can run at different
rates.

| Language L2 |

module P1

{ e,
m!P2;
................. }

module P2

{ e,
m?P1;
................. }

| Language L4 |

module P1

{ e
mliP2;
................. }

module P2

{ e
m?P1;
................. }

20 of 38

Models of Computation

The model of computation deals with the set of theoretical choices that build the
execution model of the language.

m A designis represented as a set of components, which
can be considered as isolated monolithic modules (often

/;;;—;;;;;—;; ---- called processes or tasks), interacting with each other

; ;_Z;?fff” and with the environment.
V. The model of computation defines the behavior and
interaction mechanisms of these modules.

///////////// a
,/// ////// /././
P S LIS //:

,,,,,,,,,,,,,,,,,,,,,,,,

//////////

72 // 7 //
IATIHIIIITIII S
IR
//////////////

21 of 38

Models of Computation

The model of computation deals with the set of theoretical choices that build the
execution model of the language.

m Models of computation usually refer to:

a9 how each module (process or task) performs
internal computation

how they transfer information between them
a9 how they relate in terms of concurrency

LSS LSS
A A A S,

22 of 38

Models of Computation

The model of computation deals with the set of theoretical choices that build the
execution model of the language.

,,,
S LS AL LSS TS S
s // // AL
///////////////////////////

///////////////////

//////////

//////////////
,/// ////// /./
LA

,,,,,,,,,,,,,,,,,,,,,,,,

//////////

/‘/‘//‘/////‘,;f
/ // //.//////./
TS IS

LSS AL LA S S
//////////////

Models of computation usually refer to:

a9 how each module (process or task) performs
internal computation

0 how they transfer information between them
a9 how they relate in terms of concurrency

Some models of computation do not refer to aspects
related to the internal computation of the modules, but
only to module interaction and concurrency.

The main aspects we are interested In:
Concurrency
Communication&Synchronization
Time

o a a d

Hierarchy

23 of 38

Concurrency

m A system consists of several activities (processes or tasks) which potentially can be
executed in parallel. Such activities are called concurrent.

How to express concurrency?

a3 This is one aspect in which models of computation differ!
- Data-driven concurrency
- Control-driven concurrency

24 of 38

Data-driven Concurrency

The system is modelled as a set of processes without any explicit specification of the
ordering of executions.

The execution order of processes (and, implicitly, the potential of parallelism) is fixed
solely by data dependencies

m Appropriate e.g. for many DSP applications

25 of 38

Data-driven Concurrency

26 of 38

Data-driven Concurrency

Process p1(inint a, out int x, out int y) {

Process p2(in int a, out int x) { I

p
Process p3(in int a, out int x) {
}
Process p4(inint a, inint b, out int x) { C3 C4
}

channel int |, O, C1, C2, C3, C4;

p1(l, C1, C2);, -
2(C1, C3). It doesn’t matter in
03 (C2’ C 4)f _which order | have
(

written this.
p4(C3, C4, O); _

27 of 38

Control-driven Concurrency

m [he execution order of processes is
given explicitly in the system model.

m Explicit constructs are used to specify
sequential execution and concurrency.

28 of 38

Control-driven Concurrency

module p1: m The execution order of processes is
""""" given explicitly in the system model.
end module

module p2: m Explicit constructs are used to specify
""""" sequential execution and concurrency.
end module

module p3:

end module

module p4-:

end module

run p1; | Here, the order in

[runp2 |l run 3l L which we write is

run p4 | essential!

29 of 38

Communication

m Processes have to communicate in order to exchange information.

Various communication mechanisms are used in different computation models:

0 shared memory

7 message passing
- blocking

- non-blocking

30 of 38

Shared Memory Communication

m Each sending process writes to shared variables which can be read by a
receiving process.

/shared memory Private variables:

int X; - a: local to p1
/ \ - b: local to p2

process p1{ process p2{

int a int b Shared variable:

................ _ X

X =a+1; b=X;

31 of 38

Message-passing Communication

m Data (messages) are passed over an abstract communication medium called

channel.

process p1{

Abstract channel C

m [his communication model is adequate for modeling of distributed systems.

process p2{

32 of 38

Message-passing Communication

m Blocking communication

A process which communicates over the channel blocks itself (suspends) until
the other process is ready for the data transfer.

|

The two processes have to synchronize before data transfer can be initiated.

33 of 38

Message-passing Communication

Non-blocking communication

Processes do not have to synchronize for communication!

|

Additional storage (buffer) has to be associated with the channel if no
messages are to be lost!

0 The sending process places the message into the buffer and continues
execution.

The receiving process reads the message from the channel whenever it is
ready to do it.

34 of 38

Synchronization

m Synchronization cannot be separated from communication.

Any interaction between processes implies a certain degree of
communication and synchronization.

m Synchronization:One process is suspended until another one reaches a
certain point in its execution.

a9 Control-dependent synchronization

0 Data-dependent synchronization

35 of 38

Control-dependent Synchronization: Example

module p1: = With control-dependent synchronization the con- trol
end module structure is responsible for synchronization

module p2: = In the example we have several synchronization
end module points specified:

module p3: 0 betwee.n completion of p1 and starting of p2
.......... and p3;

end module 0 between completion of p2 and p3, and
module p4: starting of p4.

end module

run p1;

[run p2 || run p3];
run p4

36 of 38

Data-dependent Synchronization: Example

int X;
process p1{ process p2{ process p3{
X=..; wait until X=...; wait until X is modified:;

37 of 38

And don’t forget: Time!

m How is time handled?

This makes a great difference between models of computation!

38 of 38

Common Models of Computation

In this course, we will analyze some of the models of computation commonly used
to describe embedded systems:

) Dataflow Models

) Petri Nets

0 Discrete Event

) (Synchronous) Finite State Machines

) Globally Asynchronous Locally Synchronous Models

) Timed & Hybrid Automata

39 of 38

	Slide 1: System Design and Methodology / Embedded Systems Design II. Models of Computation and Modeling Languages
	Slide 2: Models of Computation and Modeling Languages
	Slide 3: From Specifications to Implementations
	Slide 4: System Specifications
	Slide 5: System Model
	Slide 6: System Model
	Slide 7: System Model
	Slide 8: System Model
	Slide 9: System Model
	Slide 10: System Model
	Slide 11: Semantics of System Models
	Slide 12: Semantics of System Models
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Models of Computation
	Slide 22: Models of Computation
	Slide 23: Models of Computation
	Slide 24: Concurrency
	Slide 25: Data-driven Concurrency
	Slide 26: Data-driven Concurrency
	Slide 27: Data-driven Concurrency
	Slide 28: Control-driven Concurrency
	Slide 29: Control-driven Concurrency
	Slide 30: Communication
	Slide 31: Shared Memory Communication
	Slide 32: Message-passing Communication
	Slide 33: Message-passing Communication
	Slide 34: Message-passing Communication
	Slide 35: Synchronization
	Slide 36: Control-dependent Synchronization: Example
	Slide 37: Data-dependent Synchronization: Example
	Slide 38: And don’t forget: Time!
	Slide 39: Common Models of Computation

